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Abstract

We present an empirical algorithm to forecast the evolution of the number of COVID-19 symp-
tomatic patients after social distancing interventions. The algorithm is based on a low dimen-
sional model for the variation of the exponential growth rate that decreases after the implemen-
tation of the social distancing measures. From the observable data given by the number of tested
positive, our model estimates the number of infected hindcast introducing in the model formu-
lation the incubation time. We also use the model to follow the number of infected patients who
later die using the registered number of deaths and the distribution time from infection to death.
We present some experiments to show the ability of the model to properly forecast the epidemic
spread at the beginning of the epidemic outbreak when very little data and information about
the coronavirus were available. In the case of France, we obtain a correct estimate of the peak
of the new cases of tested positives 9 days in advance and only 7 days after the implementation
of a strict lockdown. Moreover, using an extended model we study the timeline of the first wave
obtaining a precise knowledge of the chronology of the main epidemiological events during the
full course of the first wave in South Korea, Italy, France, Spain, Germany, United Kingdom,
The New York state and USA. In particular we estimate the number of days the coronavirus
was in free circulation before the social distancing measures take effect. Moreover, using the
results obtained in the different regions, we obtain that the initial exponential growth rate of
the epidemic, when the coronavirus is in free circulation, is around the value 0.250737.
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Source Code

To simplify the presentation of the code we use a single file where all basic procedures are
included, from the management of data to the parameter optimization. The reviewed source
code and documentation for this algorithm are available from the web page of this article!.
Compilation and usage instruction are included in the README. txt file of the archive.

Keywords: COVID-19, forecast, social distancing

Introduction

In this work we propose an empirical parametric model to forecast the evolution of the number of
COVID-19 symptomatic patients, N(t), after social distancing interventions. This study presents a
numerical analysis of the effect of the confinement phase of the pandemic. It attempts to predict
the evolution of the number of cases and deaths, based on past observations and assuming that the
social distancing policy is steady or evolves slowly. Hence the main assumptions we take are:

1. The evolution of the cumulative number of contaminated patients, y(t), grows at an exponential

rate (that we name a), during a period of time t5. We thus have y/(t) = ay(t). Then, after
social distancing measures are imposed the exponential rate r(t) (such that y'(¢t) = r(t)y(t))
decreases until it attains the value 0 at time t;. In this study, we considered first the following
type of evolution for the exponential rate:

a if 0<t<t
ri(t) =4 b if te (to,t1] (1)
0 of t>1

but we realized that the next parametric model, with the same number of unknowns, was more
flexible and accurate:

a if 0<t<tg
v
r(t) = a(t’flljfo> if te (to,ti] (2)
0 Zf t>t.

In the first model the parameters for r1(t) are a, b, tq and ¢;, and the parameters for r(t) are
a,v,to and ty. The values for a,b and v are always positive. The larger the value of v the
stronger the effect of the social distancing measures on the growth of N(¢).

. The evolution of the number N(¢) of the symptomatic patients at time ¢ depends on the

evolution law of contaminated patients, and on the law of the incubation period.

. At the beginning of the epidemic outbreak, the data of tested positive patients provided by

most countries can be assumed to concern mostly symptomatic patients. This is a reasonable
assumption in the countries where tests were performed only on patients which show some
symptoms. It is important to point out that the available databases about the coronavirus
expansion make no distinction between infected subjects which show symptoms or not. If we
assume that the number of symptomatic patients is proportional to the number of registered
infected subjects, the model still works. This is a reasonable assumption as long as a country
keeps the same infection test policy. If a country changes its testing policy and starts testing

Yhttps://www.ipol.im/pub/pre/301/
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more subjects, then many non-symptomatic subjects are going to be included in the dataset,
which can strongly deteriorate the accuracy of any observational model. This is why our
model (2) for the decay of the exponential rate is merely empirical, and aims at the simplest
formulation possible.

4. The social distancing measures are taken at the beginning of the epidemic and there are many
more exposed subjects than infected and recovered ones, so that we can assume that the
variation of the symptomatic patients only depends on the existing contaminated patients and
the influence of the social distancing measures (see below the relation with the SIR model).

Regarding the distribution of the incubation period, Lauer et al. in [6], using the data of 181
patients approximate the distribution of the incubation period as a log-normal distribution. The
cumulative distribution function of this log-normal is given by

(log z—p)?
t o 2 .
F(ty={ Jo —Fom—de if t>0 (3)
0 otherwise

with © = 1.621 and o = 0.418.

The rest of the paper is organized in the following way: in section 2 we study the solution of
equation (4). In section 3, we analyze the relation of this model with the usual SIR model. In section
4, we present a short discussion about the lack of reliability of the available data of the COVID-19
spread. In section 5, we present the algorithm proposed to fit the model to the data. In section 6,
we present an extension of the empirical model to the forecast of the number of deaths. Section 7
presents some experiments which focus on two aspects of the the epidemic spread: the ability of the
model to predict the epidemic evolution in advance and the study of the full course of the first wave.
Finally section 8 concludes.

2 The empirical evolution model

The continuous version of the evolution of contaminated subjects, y(t), following an exponential
grow, r(t), is given by the very basic differential equation:

y'(t) = r(t)y(t).

This equation can be solved explicitly, and in the case of () given by (2) the solution is

| cet if te0t)
y(t) = Celo s — & crpatn 77 (=t0=(F55) 00) 56 4 ¢ g 4] (4)
Ceto 1 (f1=t0) if o t>

we notice that C' and t, are closely related because if we change ty by to — T, C by Ce? and t
by t; — T, the solution y(¢) does not change. Therefore ¢, is an ”abstract” time and we can not
say that the coronavirus has been actually in free circulation for ¢, days. What we can say is that
the coronavirus has been in free circulation until y(¢) reaches the value Ce®® but, from the above
formula, we can not decide the actual starting time of the epidemic outbreak.
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The asymptotic state of the number of contaminated subjects is
Limy_o y(t) = C’eatoeﬁ(h*to)? (5)

and it is attained at t;. Therefore the impact of the social distancing measures is determined by the
value :

a
Moty o = ﬁ(tl — to). (6)

The smaller this value, the more effective the social distancing interventions. We notice that the
peak in the new daily contaminated patients is obtained when #/(¢) changes sign which corresponds
to y”(t) = 0. Using a straightforward computation we obtain that the peak is attained at

1
vy 1
tpeak =11 — <_(t1 - to)'y) "
a
The evolution of symptomatic subjects, taking into account the cumulative distribution of the incu-
bation time, F'(t), is given by

N(t) = /0 y/ () F(t — )ds. (7)

We observe that since F'(t) converges to 1 when ¢ goes to 0o, then

LthHOON(t) — Ceatoeﬁ(tlfto) _ C

Notice that y(0) = C, N(0) = 0 and there is a delay between the evolutions of y(t) — C' and N(t),
corresponding to the time required by contaminated subjects to become symptomatic. Notice that
the official number of cases is related to N(¢) which is the variable that can be observable. N(t) does
not follow, in general an exponential growth. In fact:

y(t+1)

ye+y) , NEHD My (s)F(t+ 1 - s)ds
y(t) # log NG = log TOF(—ds

a =~ log

In practice, the observable data is the number of registered tested positive patients. An extra
time is required from the moment the patient shows symptoms until the test is done and it is finally
recorded as tested positive. This time strongly depends on the in-country logistics. In this work we
assume that this time is about 2 days, so in expression 7 we replace F(t — s) by F(t — s — 2). This
modification does not change the profile of N(t), it simply represents an extra delay between the
evolution of contaminated subjects and the evolution of the registered tested positive subjects.

2.1 An extended model to track different trend modifications

The exponential growth given by equation (2) is very simple and it is useful to compute an estimation
of y(t) after an strict lockdown is implemented, this estimation covers from the epidemic outbreak
until a certain time after the daily peak. However if we want to go further and to approximate the
evolution for a longer time we need to extend the model to have more flexibility in order to fit the
epidemic spread. In fact, the above basic model can be easily extended in the following way: let

{tk 5}, K be 2 increasing sequences of real numbers satisfying t5! < t§. {tk} represent times

4
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where a change is expected in the evolution trend of the epidemic. Then the exponential growth (2)
can be extended in the following way:

ai if t €10,tg]
v
ag ti’fjti ' if te(th it k=1,2,.., K —1
(t) = g (8)
o LR te (¢
UK \iFoF if € (ty,t1']
0 if t >t

Notice that 7(t) can be discontinuous at t§ because a relaxation of social distancing measures will
definitely produce an abrupt modification in the exponential growth of the epidemic. We point out
that the function r(t) is always decreasing except at the possible points of discontinuity ¢& . In
particular, the model is not well adapted to scenarios where the growth rate can grow continuously,
such as a second epidemic wave.

3 Relation with the SIR model

The basic SIR model separates the population in three compartments: S(¢) (the number of suscep-
tible), I(t) (the number of infectious), and R(t) (the number of recovered). It should be mentioned
in this model that the number of dead is negligible. We can also consider that R(t) is the sum of
recovered and deceased. Each member of the population typically progresses from susceptible to
infectious to recovered. The basic SIR model to estimate S(t), I(t) and R(t) is the following system
of ordinary differential equations:

as _ -3 I g

g - ST :

da = (51+S+R - 7) I= (R01+S+R - 1) I
an _ 71

di Y4,

where 8 and v are parameters which depend on the particular disease. Ry = %, named the repro-

ductive number, is one of the key parameters in transmission models and it represents the number
of secondary infections that arise from a typical primary case in a completely susceptible popula-
tion. Notice that S(t), the number of susceptible subjects, is a decreasing function. When the ratio
between S(t) and the total population satisfies

S(t) 1

I(t)+S@t)+ R(t) Ry’

we obtain %(t) = 0. Hence the peak of infected subjects is attained, and from that time, the number
of infected subjects starts decreasing. Notice that the larger Ry, the larger the time required to
attain the infection peak. We observe that in our model, in the evolution of contaminated patients,
y(t), we include the infected and recovered subjects, so y(t) = I(t) + R(t) and then using the SIR

model we obtain that

dy S(t)
—(t) = t)— R(t)). 9

i =P s+ e B (9)
The SIR model with constant v and $ and the conclusions about the peak of infected subjects make

sense only if the virus propagates freely across time, but everything changes if we impose social
distancing measures to the population. A natural way to include human interventions in the SIR
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model is to replace § by a time dependent function §(t). This strategy has been used by different
authors in different contexts using extended versions of the SIR models. For instance in [3], the
authors propose the following exponential type function:

B(t) = By + (By — Br)e 9010l
another exponential type function has been introduced in [7]:
T(t) = e H=N)+
In [1] the following rational function is proposed:

() = Bo(1 = p(t —t0)/t)

In [4] the author proposes the function

7(t) = ol = plt — N4 (10)

We observe that this is a particular case of the function (2) defining r(¢) where a = 79, p = 1/(t1 —to),
N =ty and v = 1. The only difference of this function with r(¢) is that in r(¢) we add the power 7
to modulate the way the exponential growth rate decreases.

In this work we assume that social distancing interventions govern the evolution of contaminated
subjects rather than the SIR dynamic and we replace equation (9) by

Therefore we include in the term r(¢) the impact of the human interventions, the influence of the
ratio between S(t) and the total population and the influence of R(t). The latter makes sense if we
are at the beginning of the pandemic (so R(t) =~ 0) or if we assume that R(¢) is proportional to y(t).
By focusing just on the number of contaminated subjects we reduce the complexity of the problem
and we avoid to deal with the balance between infected, exposed and recovered patients which is
very difficult to estimate properly due to the lack of accuracy in the data we can manage about the
number of infected subjects. We point out that in our model y(t) is the number of infected patients
which show symptoms, which is the data most countries provide when using PCR tests.

4 A discussion about the reliability of the existing data
about the coronavirus expansion in terms of the evalu-
ation of the impact of social distancing interventions

Tested positive subjects: First, we stress again that what we can observe is the evolution of tested
positive subjects, which is quite different from the evolution of contaminated subjects. This value
strongly depends on the testing policy which can change across the time. If the testing policy does
not change too much during the period of time used to estimate the model, our forecast will still be
valid to some extent. This value has the advantage that it is the first one to react to the installation
of social distancing measures.

Symptomatic tested positive subjects: With the existing variety of testing policies, this value
seems to be more reliable than just tested positive subjects. On the one hand official data make no

6
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distinction between symptomatic and asymptomatic tested positive subjects. On the other hand,
when the health system is overwhelmed, many symptomatic subjects not requiring hospitalization
are simply sent home without testing.

Number of deaths: Theoretically, this is a reliable data, but when the health system is overwhelmed
a significant number of patients die without being counted as affected by the coronavirus, so the
accuracy of this data depends on the capacity of the health system to properly count the deaths.
This is far from being the case when the health system is completely overwhelmed.

Number of hospitalizations or number of patients in intensive care: Again, theoretically,
these data are more reliable than the number of tested positive, but again, in the case of a health
system completely overwhelmed, the quality of these data is strongly deteriorated. Another issue
with these data is the way they are provided. In some cases, the official data refer to the current
situation where the patients which leave the hospital or reanimation are removed from the statistics.

Another important issue in the data quality is the time required for a new case to be included in
official statistics. For example, if new PCR positive tests and new antibody positive tests are added
at the same day, the quality of the data deteriorates seriously. Indeed, both detection correspond to
infections at very different past times! Even using only PCR tests, the time from the presentation
of symptoms to inclusion in official statistics must be taken into account. In Spain, this time is
distributed with a median of 6 days; in 25% of cases it is even more than 10 days. This delay
deteriorates the usability of the data, and hinders a short-term prediction of the evolution of the
epidemic.

5 The algorithm

As discussed in the previous section, the data we use are far for being reliable. In our approach
we use a very simple model with few parameters in the hope that the simplicity of the model can
compensate in some way for the lack of accuracy of the data and provide a big picture of the evolution
of pandemic expansion after social distancing interventions. We observe that if we have not enough
data after the implementation of social distancing measures, the parameters v and t; cannot be
computed properly from the data. To reduce the uncertainty in the calculation of these parameters,
we can set ”a priori” the expected value of the effectiveness of the containment effectiveness given by
Mty 1y, defined in (6), based on the values obtained for other countries which have implemented
previously the same kind of social distancing measures. That is, we can constrain the effectiveness
to satisfy

Moyt = —(t1 —to) = My (11)

where My > 0.
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5.1 Model discretization
We estimate N (t) by discretizing equation (7) in the following basic way

k=t1—1

N(t) = /Ot Y (s)F(t — s)ds =~ Z (y(k+1) —y(k))F(t — (k+0.5)), (12)

k=0
where y(t) is given by (4).

5.2 Parameter adjustment

Given a dataset, D(t), of the number of symptomatic patients across the time for a region, we fix
the parameters by minimizing the quadratic mean error

1 tmax

S () > w(t) (D) = N(t+1))°, (13)

t=tmin t=tmin

Errory (C,a,7,to, t1,t) =

minytmaz]

where £ is the translation of N(¢) to fit D(t). The interval [tmin, fmax] is the range of values we use
to fit the parameters of the model. We assign the following weight w(t) to each data value in the
model estimation:

w(t) = (t — tmin + 1) (14)

where a > 0. When « = 0 all points in the dataset have the same weight (w(t) = 1). The higher the
value of o the more weight it will be giving to the latest values of the dataset. To adjust the model
parameters, we use a Newton-Raphson type method combined with an extensive search exploration
of potential parameter interval values.

Computation of C: we observe that C' is a scale factor and if the other parameters of the model
are given, C' can be estimated by equating to zero the derivative of the error (13) with respect to C,
which yields the following expression for C:

o 2w (t)D(t)N(t + 1)
tmas (DN, (E+ DNy (t+ 1)

t=tmin

(15)

where Ny(t +1) = N(t + 1) is computed using C' = 1 and the other given parameters. We point out
that the values of C' and ty are very related, in terms of the evolution of contaminated subjects, y(t).
Indeed the values C' = Ce® and t, = t, — 1 provide the same results as C' and t,.

5.3 Computing the minimum of Errory C,a,v,to,t1,1)

minatmax](
First, we observe that, in general, due to the strong variation of the available data, the quadratic
error, Error[tmm,tmz]((f,a,’y,to,tl,f) can have several local minima. To avoid getting trapped in
a spurious local minimum, we use a basic optimization strategy, where we combine massive eval-
uations of Errory,, t...1(C,a,7,to,t1,1) in large discrete intervals with a basic Newton-Raphson
type method to improve locally a,v,t. To simplify the complexity, we use (15) to express C as

a function of the rest of parameters, that is, C' = C(a,~,to,t1,t), so the quadratic error becomes

Errory,.,. il (@, 7, to, t1, 1) = Errory, . oe001(Cla, v, to, ti,t), a7y, to, tr,t). The times ¢p and ¢ are

8
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computed in integer precision and the rest of parameters in floating precision. The computation of
to and t; in integer precision has little influence on the final result because small variations of ¢y are
mostly compensated modifying C' and small variations of ¢; are mostly compensated modifying 7.

MAIN STEPS OF THE OPTIMIZATION ALGORITHM

e Step 1: Computation of ¢, and t,,,.. We define t,;, as the the time when the data starts to
grow with an exponential growth with a minimum value of 10, that is:

tmin = min{t : D(t —2) > 10 and D(¢) > 1.1D(t — 1) and D(t — 1) > 1.1D(t — 2)}

and we fix tyax = min{t,in+ N1, t.}, where Ny is a parameter of the algorithm to fix the number
of days used to compute the model. t. is the max available time in the data set observation.

e Step 2: Initial estimation of . We fix initially the following reference values for the rest of
parameters: a = 0.13, v = 2, ty = 17 and ¢; = 52. Then ¢ is computed initially in integer
precision as

to=argmin  Errory,, ..1(a,7, to, t1, k)
k€ N[kmin,kmax]

where [kmin, kmax] has been fixed experimentally as [kmin, kmax] =[—26 — tmin, 10 — tmin]-

e Step 3: Computing an initial minimum evaluating the energy in parameter intervals. For each
parameter p € {a,7,to, 1,1} we define a discrete interval I, = {p;, ..Dn, } (in the case of p = t,
I, is a neighborhood of to computed above) and we define the set Z = I, X I, X I;; X I;; X I.
We compute a first minimum, P, as

Py = arg min Errort,.. tmae) (@7, to, t1,t)
(a777t07t1:t)61-

This ”brute force” technique has the advantage that it can be easily implemented using paral-
lelization and to a certain extent, it avoids getting trapped in spurious local minima. Once F,
is computed, it is improved using a basic Newton-Raphson method to optimize a, 7, t.

e Step 4. Improving iteratively the minimum location: For £ = 0,1, 2, .. we use a small discrete
neighborhood, Np,, of Py, and we define Py, as

P.y1 = argmin Ermr[tmmtmm](a,’y,to,tl,f)

(ayysto,t1,t)ENP,

after this initial estimation, Py, is improved using the Newton-Raphson method. Iterations
stop when
Error(P,) — Error(Pgi1)

Error(Py)
where TOL is a convergence parameter (we fix TOL = 1079 in the algorithm implementation).

This iterative procedure allows to improve the minimum estimation. In particular, it allows
the minimum to go beyond the initial parameter interval Z.

<TOL

As quoted before, at the beginning of the epidemic spread, when not much data is available it can
be useful to fix the expected value of effectiveness of the containment effectiveness given by M, -+, +,
defined in (6), in that case the value of M, , 1, becomes a parameter of the algorithm and this value
constraints the parameter optimization steps of the algorithm.



Luis ALVAREZ, MIGUEL COLOM, AND JEAN-MICHEL MOREL

5.4 Adaptation of the algorithm to the extended model

In the case where the exponential growth is given by the extended model (8), we compute the
unknowns of the model, given by C, t and t§, ¥, a, v for k=1,.. K, in the following way:

1. We compute C, t and t},t}, a1,y using the algorithm explained above.
2. for each k=2,...K, we compute tf, ¥, ay, vy iteratively in the following way:

® trmar = Min{tmin + Zle N;,t.}. (where Ny is a parameter of the algorithm to fix how
many days we consider to compute the model k)

L tlg :E+tmam _Nk

e We compute ¥, ay,vx by minimizing the quadratic error in the interval [tmin, tmae] With
respect to t¥, a;, and ;.

5.5 Description of the online DEMO parameters

The parameters we use in the online DEMO interface are the following:

1. Type of data: it can be tested positive or deaths.

2. Number of days to compute the basic model: this parameter is denoted by N7 in the text. It
represents the number of days used to compute the model after the number of cases starts to
grow exponentially (that is ).

3. Constraining lockdown effectiveness: if this option is activated by the user, then she/he can
constrain the lockdown effectiveness given by equation (6).

4. Use extended model to fit trend modification: if this option is activated by the user, then she/he
can choose the number of days used to compute two extra extended models. These parameters
are denoted by N; and Nj in the text. If the value of one of these parameters is zero, then no
extended model is computed. Using two extended models and the basic model (the first one)
we can manage situations where the pandemic outbreak initially starts to growth exponentially
and then, due to lockdown measures the growth rate starts to decrease (this is managed by the
basic model), then the growth rate changes its trend, because, for instance, the test capacity
of the country improves (this can be managed by the first extended model) and finally the
evolution stabilizes around a baseline (this can be managed by the second extended model).
Many countries have followed these three phases when a strict lockdown has been implemented.
We point out that the model we propose is not expected to simulate properly the impact of
mild social distancing measures or of a second wave.

5. Weight in least squares fitting: the parameter « in equation (14).

6. The country or uploaded data used .

10
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6 Forecasting the number of deaths

We can easily extend the model to the case of the evolution of the number of deaths. In this case y(t)
represents the number of contaminated subjects who die and N (t) the registered number of deaths.
The only thing we have to change is the cumulative distribution F(¢). In that case we have to use
the infection-to-death time distribution. In [2], the authors model this distribution as the sum of
two independent random times, both being Gamma distributed with mean 5.1 days and coefficient
of variation 0.86 and 18.8 days and a coefficient of variation 0.45 respectively. The infection-to-death
distribution is therefore given by

ifrm - (Gamma(5.1,0.86) + Gamma(18.8,0.45))

where i .., is the population averaged over the age structure of a given country. As i, is a constant
factor, we can assume that if,,, = 1 because in our model, this factor will be compensated by the
constant factor C'. Therefore, changing, in expression (7), F'(t) by the cumulative distribution of the
infection-to-death time distribution we can follow the evolution of the number of deaths.

In the same way, assuming that we know the time distribution of other registered values as for
instance, the infection-to-hospitalization time distribution, we can forecast, using the same model,
the evolution of the corresponding registered value. We point out that the time distribution of the
COVID-19 registered values is a topic under investigation and the results can change in the next
future. For instance, the study presented in [9] suggests that there are two sub-populations in delays
between hospitalization and death: individuals that die quickly upon hospital admission (15% of
fatal cases, mean time to death of 0.67 days) and individuals who die after longer time periods
(85% of fatal cases, mean time to death of 13.2 days). The combination of Gamma distributions
presented above does not reflect this behavior. In the official Spain report [8] using the information
of 9765 patients, it is estimated that, in the case of men, the time from the onset of symptoms
to death has a median of 11 days with quartiles Q1 = 7 and 3 = 16. In the case of women,
these values are median= 10, Q1 = 6 and ()3 = 14. Based on the values for men an women, we
approximate, experimentally, the distribution of the time from the onset of symptoms to death as
a lognormal(p = 2.351375257, 0 = 0.6011434688) distribution. The median of this distribution is
=10.5, Q1 =7 and Q3 = 15.75. So we can approximate the distribution of the time from infection
to death as the following mixtures of lognormal distributions

lognormal(p = 1.621,0 = 0.418) + lognormal(p = 2.351375257, 0 = 0.6011434688), (16)

where the first one corresponds to the time infection to the onset of symptoms (see (3)). In Fig.
1, we compare the profile of the distributions using the mixture of Gammas proposed in [2] and
the one obtained using the mixture of lognormals (16). We point out that they are quite different.
Using the mixture of Gammas, a patient takes considerably more time to die from the infection.
In Fig. 2 we compare the forecasts obtained by the proposed model using the infection to death
time distribution proposed in [2] and the one obtained using (16). We observe that the forecast of
deaths are quite similar but the forecasts of fatally affected subjects are very different. We believe
that the one obtained by the lognormals is more plausible because in the other one the number of
fatally affected subjects goes to zero too quickly with respect to the evolution of deaths. In the IPOL
online demo we use the one obtained by the mixture of lognormals. However, we believe that this
approximation is not very accurate either, and as quoted before, we think that the knowledge and
accuracy of the time distribution of the basic epidemic factors will be improved in the near future.
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Figure 1: Comparison of the infection to death time distribution using the mixture of Gammas
proposed in [2] and the one obtained using the mixture of lognormals (16).

7 Experiments

In the case of the basic model, we are going to focus the attention of our experiments on studying
the ability of the model to predict the evolution of the epidemic in the early stages of the epidemic
spread in the case a strict lockdown is implemented.

We will use the extended model to study the evolution of the epidemic in the first wave, estab-
lishing a timeline of epidemiological events that we will try to follow from the adjustment of the
parameters of the extended model to the complete evolution of the epidemic during the first wave.

Therefore, due to its simplicity, we use the basic model to predict the epidemic spread in the early
stages when little information is available, and we use the extended model to study the timeline of
main epidemiological events in the first wave. Due to its greater complexity, the extended model can
better explain the full course of the epidemic during the first wave, which includes an exponential
growth phase followed by a decay phase and finally a stabilization around a baseline.

We used the dataset of the evolution of tested positive patients for the different countries from
the web page https://www.ecdc.europa.eu/en/publications-data/download-todays-data-
geographic-distribution-covid-19-cases-worldwide. All the experiments presented can be
reproduced using the online DEMO.

7.1 Experiments with the basic model. The ability to predict the epi-
demic evolution in advance.

To study the ability of the model to predict the evolution of the epidemic in the early stages of the

epidemic spread we focus on the study of the model estimation, using the available data up to a

given date, of the following epidemiological events:

e The date the peak of new daily cases is reached.

12


https://www.ecdc.europa.eu/en/publications-data/download-todays-data-
geographic-distribution-covid-19-cases-worldwide
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Figure 2: Comparison of the forecasts obtained by the proposed model using the infection to death
time distribution proposed in [2] and the one obtained using (16).
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e The value of the number of daily cases at the peak.

e The 7-day average of the accumulated number of cases three weeks after reaching the peak.

We are going to use the case of France in this study. The case of France is quite challenging
because both the evolution of the number of registered infected and the evolution of the number
of deaths show strong fluctuations near the peak of new daily cases. The parameter N; indicates
the number of days used to compute the model parameters. Therefore, modifying N; we obtain the
model estimation using the data up to a given date which depends on the value of N;. In Fig. 3 and 5
we illustrate the basic model for the number of tested positive and deaths and some particular values
of N;. We will compare the results obtained by leaving free the effectiveness of the social distancing
measures given by M, ¢+ and setting "a priori” the value of M, 4. In all the experiments
presented in this section we use as regularization weight parameter a = 0.

In Fig.4 and 6 we show the estimate of the epidemiological events explained above using the
available data up to a given date. We point out that a strict lockdown was implemented in France
by March 17, the peak of the daily new cases was reached at April 2 (for tested positives) and in
April 9 (for deaths). In the case of tested positives, we observe that, without constraining the value
of My~ 10,41, We obtain a reasonable estimate of the epidemiological events since April 3 (that is 1 day
after reaching the peak). However, if we fix M, . = 1.5, we obtain a reasonable estimate since
March 24, just 7 days after the lockdown implementation and 9 days before reaching the peak, which
means that the model was able to predict the events quite correctly in advance. In fact, the error
in the estimation of March 24 was quite small (just 2.92% in the estimation of the 7-day average 3

weeks after the peak).

In the case of deaths, the results are not so good. On April 4, a large number of new deaths
were recorded in France, which produced a great disturbance in the results of the model. In fact, the
estimate of April 3 is much better than that of April 4, and until April 7 (two days before the peak)
it does not begin to provide a reasonable estimate of the events analyzed. In this case setting the
value of M, -+ does not contribute much and in fact a correct approximation is obtained before
using the model without setting the value of M, ., ¢ 4,
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Figure 3: Basic model for tested positive in France using N; = 45. On the left we present the
accumulated and daily cases when the effectiveness is free and on the right when the effectiveness is
fixed to My 4+, +, = 1.5. The algorithm uses the data up to the date represented by the vertical black
line.
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Figure 4: Some epidemiological indicators computed by our model using the registered number of
new infected up to the date in the horizontal axis. The solid lines represent the estimate constraining
the effectiveness M, ~4,+, = 1.5, the dashed line, the estimate without constraining M, -+, , and
the dotted line represents the average of the cumulative registered number of infected between April
20 and April 26. From left to right and from top to down, we present: (i) the estimated date of the
daily peak of the new tested positive, (ii) the estimated value of the daily number of tested positive
in the peak, (iii) the estimate of the average of the cumulative tested positive between April 20 and
April 26, and (iv) the error, in percentage, between the estimate and actual value of the average of
the cumulative tested positive between April 20 and April 26.
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Figure 5: Basic model for deaths in France using N; = 34. On the left we present the accumulated
and daily cases when the effectiveness is free and on the right when the effectiveness is fixed to
Mg~ 4,1o = 2. The algorithm uses the data up to the date represented by the vertical black line.
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Figure 6: Some epidemiological indicators computed by our model using the registered number of
deaths up to the date in the horizontal axis. The solid lines represent the estimate constraining the
effectiveness M, -4+, = 1.5, the dashed line, the estimate without constraining M, 54+, and the
dotted line represents the average of the cumulative registered number of deaths between April 27
and May 3. From left to right and from top to down, we present: (i) the estimated date of the daily
peak of the new deaths, (ii) the estimated value of the daily number of deaths in the peak, (iii) the
estimate of the average of the cumulative registered number of deaths between April 27 and May
3, and (iv) the error, in percentage, between the estimate and actual value of the average of the
cumulative registered number of deaths between April 27 and May 3.
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7.2 Experiments with the extended model. Understanding the full
course of the epidemic during the first wave.

We are going to use the extended model to try to better understand the evolution of the first epidemic
wave in South Korea, Italy, Spain, France, United Kingdom, USA and New York state. Using the
proposed model, among other things, we are going to estimate the number of days that the virus
has been circulating freely before the effect of the social distancing measures take effect, as well as
the exponential growth rate of infected in this phase of free circulation. We are going to study the
effect of a strict lockdown implemented in the early stages of the epidemic spread, the time it takes
to reach the peak of daily cases and the time it takes to divide by two the number of cases reached
at the peak. We also compare the results obtained for tested positive and deaths, which provide
interesting information on the testing capacity of these countries at the beginning of the epidemic
spread.

For each country we manually chose the parameters of the model (see subsection 5.5) to get the
best fit between the daily registered data and the model prediction given by N'(t) (see (7)). In Fig.
8,9, 10 and 11 we illustrate the results obtained and the model parameters for each country. For
each country, the value of M, ¢ (see (11)) only appears if it is manually fixed in the algorithm.

To study the epidemic spread, we will use the timeline (see Fig. 7) given by the following
epidemiological events:

e Outbreak: Start date of the first epidemic wave. In the case of infected, we consider that
the epidemic wave begins when the accumulated number of observable cases reaches 1 subject
per 100,000 inhabitants (1 subject per 1,000,000 in the case of deaths). In fact we have two
estimates of the outbreak date. The one obtained using the real data-set communicated by the
countries (that we name data outbreak) and the one obtained from the model approximation
of the observable data given by N(¢) (that we name model outbreak). In general, there is little
difference between the two estimates in the countries studied. In the case of New York state
there are 4.4 days of difference in the case of infected due to the fact that very few cases were
detected at the beginning of the epidemic.

e SDM: Social Distancing Measures. We will assume that the countries implement social dis-
tancing measures to control the epidemic. We pay particular attention to cases where a strict
lockdown is implemented at the beginning of the epidemic spread because that allows us to
study the impact of a strict lockdown as the first measure to control the epidemic. Except in
the case of a strict lockdown, this event does not have a specific date associated with it because
it can correspond to a variety of measures taken at different times.

e FTM: first trend modification in reaction to SDIM. We assume, in agreement with our model,
that at the beginning of the epidemic the coronavirus was in free circulation and that the
number of infected grew exponentially with a constant growth rate, a;, until the accumulated
number of infected reached the value Ce®% and from that moment, in reaction to the social
distancing measures the growth rate began to decrease. We calculate the date when this
reaction begins to be observable by the model as the time ¢ such that N(t) = Ce® — C. This
is a useful information because it tells us the observable reaction time to the social distancing
measures. We consider that the coronavirus was in free circulation from the date of the start
of the outbreak (computed using the model) until the first trend modification.

e PEAK: date when the maximum of N’(¢) is reached in the first wave, which represents the
peak of the daily number of observable tested positive or deaths.
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Figure 7: Timeline of events we consider in the first wave of the COVID-19 epidemic spread.

e HALF PEAK: date after reaching the peak when the number of daily cases at the peak is
divided by two.

e EFW: ending of the first wave. In the case of infected, we observe that over time, the number
of new daily cases stabilizes around a baseline that changes between different countries. We
manually set the value of the parameter N, so that this stabilization time corresponds to
tmin + N1 + No. We consider this time as the date of the end of the first wave. In the case of
the deceased, this stabilization is not easily observed and we set the date of the end of the first
wave as the time the number of new daily cases reaches the value of 1 deceased per 1,000,000
inhabitants.

In tables 2 and 3 we present a summary of the dates of the timeline events we obtain for the
different countries for tested positive and deaths. Below each date, in brackets, we write the number
of days passed since the previous event. Furthermore, for each event we include the value of the
daily number of cases predicted by the model for that day (normalized to the country’s population)
and below that value, in brackets, we write the ratio between this value and the same value in the
previous event. This gives us an idea of the growth rate of the number of daily cases between one
event and another. In table 4 we compare between the results obtained for the tested positive and
deaths. Below we will present a discussion of the most relevant results of these large tables, both
globally and country by country.
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7.2.1 Analysis country by country

South Korea: Since the initial outbreak, the virus was in free circulation only for 7.38 days, then the
model starts to react to the SDM and reached the daily peak 1.61 days later and the number of cases
at the peak (1.24) was divided by two 6.37 days later. A very good performance in controlling the
epidemic spread. South Korea monitored the spread of the epidemic using technological resources,
such as tracking credit card use, checking CCTV footage and an efficient centralized contact-tracing
using cellular phones. The number of deaths has been very small and has not been studied because
it is not statistically significant.

Italy: On 8 March 2020, a strict lockdown was imposed in the Lombardy region and later, on March
11, a strict lockdown was imposed in the whole country. Since the initial outbreak, the virus was in
free circulation for 17.31 days (7.16 days after the second lockdown). The peak of daily cases was
reached 7.75 days later and the number of cases at the peak (9.526) was divided by two 25.09 days
later. The fact that the lockdown in Lombardy was implemented 3 days before the lockdown in the
whole country modifies the reaction time with respect to the second lockdown.

Spain: On 14 March 2020, a strict lockdown was imposed in the whole country. Since the initial
outbreak, the virus was in free circulation for 16.03 days (8.7 days after the lockdown). The peak
of daily cases was reached 5.29 days later and the number of cases at the peak (17.01) was divided
by two 13.08 days later. The first really significant measure to control the epidemic that Spain and
France implemented was the lockdown. Therefore, these two countries are a good example to study
how a strict lockdown affects the free circulation of the virus.

France: On 17 March 2020, a strict lockdown was imposed in the whole country. Since the initial
outbreak, the virus was in free circulation for 17 days (9.31 days after the lockdown). The peak of
daily cases was reached 6.76 days later and the number of cases at the peak (6.62) was divided by
two 16.04 days later.

Germany: Since the initial outbreak, the virus was in free circulation for only 8.43 days. The peak
of daily cases was reached 14.59 days later and the number of cases at the peak (6.532) was divided
by two 14.70 days later. A good performance in controlling the epidemic spread.

United Kingdom: Since the initial outbreak, the virus was in free circulation for 13.16 days. The
peak of daily cases was reached 15.35 days later and the number of cases at the peak (7.23) was
divided by two 41 days later.

New York State: Since the initial outbreak, the virus was in free circulation for 15.94 days. The
peak of daily cases was reached 14.63 days later and the number of cases at the peak (50.75) was
divided by two 19.96 days later.

USA: Since the initial outbreak, the virus was in free circulation for 13.59 days. The peak of daily
cases was reached 11.78 days later. In USA each state followed different strategies at different times,
globally we cannot say that a first wave has been completed in USA and then, in this case, we do
not study the evolution in USA after the first peak.

7.2.2 Global Analysis

At the beginning of the epidemic spread, among the different countries studied, only South Korea
and Germany had a testing capacity that allowed to correctly follow the evolution of the epidemic.
Indeed, these two countries obtain a similar and high initial exponential growth rate (around 0.25)
that can be obtained because of a good testing capacity which is able to track the epidemic spread.
Furthermore, in the case of Germany there are other indicators that suggest this fact, such as the
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S. Korea | Italy | France | Germany | UK

Method proposed
in this paper
Method proposed
in [7]

0.2525 | 0.1359 | 0.1282 | 0.2478 | 0.1684

0.24 0.18 0.16 0.27 0.17

Table 1: Comparison of the estimation of the initial exponential growth rate computed using our
method and the method proposed in [7].

high delay in the number of days between the outbreak of infected and the outbreak of deaths and
between the dates at the peaks of daily cases of infected and deaths. The mortality ratio obtained
by Germany is also a good sign of the testing capacity. An important key to the success of these two
countries has been the anticipation reflected in the small number of days the virus circulated freely
before social distancing measures began to take effect.

In the rest of the countries, the testing ability was not sufficient to follow the evolution of the
epidemic during the first wave. In short, the numbers of infected was strongly underestimated. In
these countries the initial exponential growth rate is lower than 0.2, there is little delay between
the outbreaks of infected and deaths and the peaks and in all these countries the mortality ratio is
artificially high.

In [7] the authors computed an initial exponential growth rate, (a; following our notation), for
different countries. In table 1 we show some comparison results. The results are reasonably similar
considering that the techniques are quite different. In [7] the calculation was carried out directly on
the registered data of infected and we do it on the infected hindcast (notice that we always estimate
the infected hindcast) and in [7], the authors use a time interval set manually and we use a time
interval calculated automatically when minimizing the quadratic error.

In Ttaly, Spain and France, who implemented a lockdown in the early stages of the epidemic
spread, it took between 8 and 10 days to begin to notice the effect of this measure (a little earlier in
Italy due to the lockdown in Lombardy). This is quite a reasonable delay considering the incubation
time and the administrative time required to register the cases. Afterwards, it took between 5 and 7
days to reach the peak of daily cases (a little longer in Italy due to the Lombardy effect again). In
Germany, UK and New York it took between 14 and 16 days to reach the peak of daily cases since
the effect of SDM began to be noticed. This suggests that the lockdown accelerated this phase
considerably. The later time to divide by two the number of daily cases reached at the peak is highly
variable among all countries and it cannot be clearly concluded that the initial lockdown improves
results.

The social distance effectiveness measure given by M, - 4, +, is very good in South Korea (Mg 4, 1, =
1). In countries who implemented a strict lockdown it is about 1.5 (it is a little higher in Italy because
of the early Lombardy lockdown) and in the other regions it is higher than 2. Even in Germany the
value is quite high (2.9554). The reason is that this measure of effectiveness considers the evolution
of the epidemic spread after the SDM starts to be noticed. So in the case of Germany the SDM
starts to be noticed very soon but the effect of the SDM was not so clear cut as in the case of a
strict lockdown.

In the study of the evolution of the number of deaths, it is highlighted that the initial exponential
growth rate of those infected who later die is very similar among all countries except Germany. The
reason could be that the number of deaths is independent of the ability to perform tests, but the
calculation of the initial exponential growth rate requires, for the deaths, that the virus has been
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circulating freely for a sufficient number of days, which happens in all countries except Germany and
this affects the evolution of the number of deaths. We observe that the initial exponential growth
rate for those infected who later died estimated in Italy, Spain, France, UK, New York State and
USA are very similar to each other and in turn very similar to the growth rate of those infected
who tested positive in South Korea and Germany. The mean of all these values obtained in these
countries is 0.2507375 with a standard deviation of only 0.0024433264. This seems to indicate that
the initial exponential growth rate when the virus circulates freely is about 0.2507375. One of the
key parameters in the initial epidemic dynamics is the doubling time ¢, which according with our
estimation corresponds to

£0-2507375:¢p __ o — tp = 2.764433643.

This estimate is consistent with the result shown in [5] where the authors estimate that tp €
[1.86,2.96]. Another key parameter of the initial epidemic dynamics is the reproduction number
R0O. There are a variety of techniques to compute R0 from the initial exponential growth rate, a;,
and some other epidemiological information like the serial time or the mean recovery time 1/v. If
we assume that the mean recovery time is 1/ € [7, 14] then we have that

1 1
RO = a;— = 0.2507375 — € [1.7551625, 3.510325].
v g

An evident key to success or failure to control the epidemic in the first wave was the anticipation
in decision-making that is reflected in the number of days that the virus had been circulating freely
before the social distancing measures began to take effect. According to our calculations, each day
that the virus circulated freely, the number of infected was multiplied by a factor of 1.285 = 0-2507375,
This indicates the enormous importance of anticipation when taking social distancing measures.

8 Conclusion

The proposed algorithm for the basic model is able to forecast quite well the evolution of the epidemic
spread in its early stage when little information is available and strict social distancing measures are
implemented. In the case of infected, if we fix manually the value of M, ;, using the one obtained
for other countries where similar social distancing measures have been imposed, we can anticipate
the daily peak and the accumulated number of tested positive 3 weeks after the daily peak.

We have used the extended model to study in detail the timeline of epidemiological events during
the full course of the first wave of the epidemic in South Korea, Italy, Spain, France, Germany, United
Kingdom, New York state and USA. We obtain that one of the key parameters in the success of early
control of the epidemic is the number of days that the coronavirus circulated freely before the social
distancing measures began to take effect. In that sense, only South-Korea and Germany successfully
anticipated the first wave. The testing capacity of the rest of the countries was not sufficient to
correctly follow the growth of the epidemic. On the other hand, from the analysis of exponential
growth in the early stage of the epidemic, we have obtained that the exponential growth rate in
this phase of the epidemic is around 0.2507375. This determines the famous R0, the reproduction
number of the coronavirus.

A critical reader will have noticed that contrarily to the SIR models, our model based on the r(¢)
law is empirical. This is justified by two facts that we have stressed:

a) Given the huge observation noise it is better to work with a very low dimensional model, so
that we estimate a very few empirical parameters, rather than the many that cannot actually be
estimated;
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Figure 8: Extended model for tested positive applied to South Korea, Italy, Spain and France. Below
the plot of each country we show the parameters of the model manually chosen to get the best fit
between the daily registered data and the model prediction.
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Figure 9: Extended model for tested positive applied to Germany, United Kingdom, New York State
and USA. Below the plot of each country we show the parameters of the model manually chosen to
get the best fit between the daily registered data and the model prediction. The value of M, .,
(see (11)) only appears if it is manually fixed in the algorithm.
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Figure 10: Extended model for deaths applied to Italy, Spain and France. Below the plot of each
country we show the parameters of the model manually chosen to get the best fit between the daily
registered data and the model prediction. The value of M, ¢ (see (11)) only appears if it is
manually fixed in the algorithm. We do not include the case of South Korea because the number of

deaths were too small to be significant from an statistical point of view.
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Figure 11: Extended model for deaths applied to Germany, United Kingdom, New York State and
USA. Below the plot of each country we show the parameters of the model manually chosen to get
the best fit between the daily registered data and the model prediction. The value of M, .+ +, (see
(11)) only appears if it is manually fixed in the algorithm.
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TESTED POSITIVE S. Korea Italy Spain France Germany UK New York USA
Model Outbreak Feb-21 Feb-29 Mar-6 Mar-9 Mar-9 Mar-12 Mar-9 Mar-14
Data Outbreak Feb-22 Feb-27 Mar-5 Mar-7 Mar-7 Mar-11 Mar-12 Mar-15
(40.666) (-2.04) (-1.02) (-1.92) (-1.11) (-1.23) (+3.3) (+1.27)
Data Outbreak: daily
value per 100,000/h 0.267 0.144 0.295 0.174 0.204 0.251 1.818 0.513
Lockdown ) Mar-11 Mar-14 Mar-17 ) ) ) .
(+12.18) | (+8.35) (+9.61)
Lockdown: daily 2.89 3.51 1.7
value per 100.000/h (x 20.05) (x 11.91) (x 9.75)
nitial exponential 0.2525 0.1359 0.1645 0.1282 0.2478 0.1684 0.1949 0.1869
growth rate
FTM: first trend Feb-29 Mar-18 Mar-22 Mar-26 Mar-17 Mar-25 Mar-25 Mar-27
modification (+6.72) (+7.16) (+8.70) (+9.31) (4+9.54) (+14.39) (+12.65) (+12.31)
FTM: daily value 1.15 7.181 13.58 5.27 2.062 3.31 21.34 5.03
per 100.000/h (x 4.31) (x 2.49) (x 3.86) (x3.10) | (x10.11) | (x13.18) | (x11.74) | (x 9.81)
PEAK: date Mar-1 Mar-25 Mar-27 Apr-2 Apr-1 Apr-9 Apr-8 Apr-8
) (+1.61) (+7.75) (+5.29) (+6.76) (+14.59) (+15.35) (+14.63) (+11.78)
PEAK: daily value 1.24 9.526 17.01 6.62 6.532 7.23 50.75 9.626
per 100.000/h (x 1.08) (x 1.33) (x 1.25) (x 1.26) (x 3.17) (x 2.18) (x 2.38) (x 1.91)
Mar-8 Apr-20 Apr-10 Apr-18 Apr-15 May-5 Apr-28
HALF PEAK: date (+6.37 | (+25.00) | (+13.08) | (+16.04) | (+14.70) | (+41.02) | (+19.96) -
EFW: date Apr-25 May-24 May-24 May-12 May-22 Jun-26 Jun-7
end first wave (+47.65) (+34.00) (+43.93) (+23.89) (+36.23) (+36.00) (+39.25) )
EFW: daily value 0.031 0.853 0.614 1.04 0.531 0.571 3.198
per 1,000,000/h (x 0.05) (x 0.18) (x 0.07) (x 0.31) (x 0.16) (x 0.16) (x 0.13) )
Measure 1.0000 1.62846 1.4927 1.4972 2.9554 2.5 2.6237 2.2872
Efectiveness

Table 2: Timeline of the epidemic spread and epidemiological indicators for tested positive in different

countries.
DEATHS S. Korea Italy Spain France Germany UK New York USA
Model Outbreak - Mar-3 Mar-10 Mar-16 Mar-18 Mar-17 Mar-18 Mar-23
Data Outbreak ) Mar-3 Mar-11 Mar-13 Mar-22 Mar-17 Mar-18 Mar-21
(-0.07) (+1.17) (-3.09) (+4.13) (-0.76) (40.09) (-1.31)
Data Outbreak: daily
value per 1.000.000/h 0.29 0.513 0.11 0.312 0.24 0.446 0.188
Lockdown Mar-11 Mar-14 Mar-17
W ) (+7.70) (+2.02) (+3.76) - - - -
Lockdown: daily value 2.06 0.92 0.38
per 1.000.000/h (x 7.19) (x 1.80) (x 3.50)
initial exponential - 0.2498 0.2517 0.2486 0.1673 0.2497 0.2560 0.2498
growth rate
FTM: first trend ) Mar-16 Mar-27 Mar-31 Apr-02 Mar-31 Apr-5 Apr-4
modification (+5.94) (+13.76) (4+14.52) (4+11.35) (+14.61) (+18.87) (+13.10)
FTM: daily value 6.173 15.44 9.45 1.56 6.83 42.70 3.49
per 1,000,000/h ) (x 2.99) (x 16.72) (x 24.54) (x 4.98) (x 28.45) (x 95.74) (x 18.54)
e Mar-29 Apr-1 Apr-9 Apr-16 Apr-13 Apr-10 Apr-17
PEAK: date ) (+12.36) | (+5.06) (+8.58) | (+13.83) | (+12.03) | (+5.03) | (+13.08)
PEAK: daily value 13.142 18.52 14.58 2.73 14.62 51.325 7.459
per 1,000,000/h ) (x 2.13) (x 1.20) (x 1.54) (x 1.76) (x 2.14) (x 1.20) (x 2.14)
. Apr-25 Apr-21 Apr-23 May-4 May-4 Apr-25
HALF PEAK: date ] (+27.11) | (+19.77) | (+13.97) | (+17.30) | (+20.79) | (+14.91) -
EFW: ending ) Jun-9 May-21 May-28 May-9 June 24 Jul-18 )
first wave (445.25) (29.96) (+35.80) (+5.22) (+50.73) (+83.69)
Measure - 2.5 1.5 1.9297 2.1677 2.5 15 2.5
Efectiveness

Table 3: Timeline of the epidemic spread and epidemiological indicators for deaths in different

countries.
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S. Korea | Italy Spain | France | Germany UK New York | USA
Lag between - 448 | 633 | 585 | 1468 | 593 5.59 6.45
data outbreaks
Lag between peaks - 3.39 4.83 7.03 15.73 3.83 2.22 8.53
Fatality rate - 13.80% | 10.89% | 22.03% | 4.18% | 20.17% | 10.11% | 7.75%
ratio peak values

Table 4: Comparison between the spread of tested positive subjects and the spread of of deaths in
different countries. We compare the lag between the start of the outbreaks, the lag between the
peaks and the fatality rate computed as the ratio between the values in the peaks.

b) The virtue of such an empirical model is that it may cope not only with noise, but also
with a variation of the very definition of observed variables. This variation definitely happens.
Indeed, the various administrations are progressively changing the way they make their statistics
about the observed cases. They also adapt their testing policy, and ultimately they also adjust their
containment policy. Thus, an adapted parametric approach to the prediction might be adequate to
overcome all these limitations.

29



Luis ALVAREZ, MIGUEL COLOM, AND JEAN-MICHEL MOREL

References

1]

2]

Lovut PiccoLoMIINT E. AND ZAMA F, Monitoring italian covid-19 spread by an adaptive seird
model. preprint medRxiv, DOI: 10.1101/2020.04.03.20049734, 2020.

SETH FLAXMAN ET  AL., Estimating  the number of infections and  the
impact of  monpharmaceutical interventions on covid-19 m 11 european
countries. Imperial ~ College  COVID-19  Response  Team, https://www.
imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/
Imperial-College-COVID19-Europe-estimates-and-NPI-impact-30-03-2020.pdf, 2020.

CHOWELL G., HENGARTNER NW., CASTILLO-CHAVEZ C., FENIMORE PW., AND HYMAN
JM., The basic reproductive number of ebola and the effects of public health measures: the cases
of congo and uganda, Journal of Theoretical Biology, 229 (2004), pp. 119-126.

JOSSELIN GGARNIER, Quantification d’incertitudes bayesienne pour les modeles de propagation
d’epidemie de type covidl9. Presentation, GdT Maths4covid19, Laboratoire Jacques-Louis Lions,
2020.

MAREK KOCHANCZYK, FREDERIC GRABOWSKI, AND TOMASZ LIPNIACKI, Super-spreading

events initiated the exponential growth phase of covid-19 with 0 higher than initially estimated,
R. Soc. open, sci.7200786 (2020).

STEPHEN A. LAUER, PHD * MS, BA * KyrA H. GRANTZ, MHS QIFANG BI1, FORREST K.
JoNEs, MPH, MHS QuLU ZHENG, PHD HANNAH R. MEREDITH, ANDREW S. AZMAN,
PuD, Nicuoras G. REicH PHD, AND PHD JUSTIN LESSLER, The incubation period of coron-

avirus disease 2019 (covid-19) from publicly reported confirmed cases: Estimation and application,
Annals of Internal Medicine, (2020).

Z. Liu, P. MAGAL, AND G. WEBB, Predicting the number of reported and unreported cases for
the covid-19 epidemics in china, south korea, italy, france, germany and united kingdom, Journal

of Theoretical Biology, 509 (2021), p. 110501.

SPAIN RED NACIONAL DE VIGILANCIA EPIDEMIOLOGICA, Informe sobre la situacidon de covid-
19 en espana. informe n. 25. 23 de abril de 2020. Official report, 2020.

HENRIK SALJE, CECILE TRAN KiEM, NOEMIE LEFRANCQ, NOEMIE COURTEJOIE, AND
PAoLO BOSETTI ET AL., Estimating the burden of sars-cov-2 in france. HAL Id: pasteur-
02548181, 2020.

30


https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-Europe-estimates-and-NPI-impact-30-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-Europe-estimates-and-NPI-impact-30-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-Europe-estimates-and-NPI-impact-30-03-2020.pdf

	Introduction
	The empirical evolution model
	An extended model to track different trend modifications

	Relation with the SIR model
	A discussion about the reliability of the existing data about the coronavirus expansion in terms of the evaluation of the impact of social distancing interventions
	The algorithm 
	Model discretization
	Parameter adjustment
	Computing the minimum of Error[tmin,tmax](C,a,,t0,t1,)
	Adaptation of the algorithm to the extended model
	Description of the online DEMO parameters

	Forecasting the number of deaths
	Experiments
	Experiments with the basic model. The ability to predict the epidemic evolution in advance.
	Experiments with the extended model. Understanding the full course of the epidemic during the first wave.
	Analysis country by country
	Global Analysis


	Conclusion

